

ASSESSMENT OF THE ANTI-INFLAMMATORY POTENTIAL OF *IXORA* *BREVIFOLIA* BENTH

Eduardo Choi Junior^{1*}, Daniele de Oliveira Silva¹, Lara P. D' M. Costa¹, Paulo R. S. da Silva¹, Paula P. O. Salem¹, Michael Murgu², Daniela A. Chagas de Paula¹, Danielle F. Dias¹, Marisi G. Soares¹

eduardo.choi@sou.unifal-mg.edu.br

1-Institute of Chemistry, Federal University of Alfenas, 37130-001, Alfenas, MG, Brazil.

2-Waters Corporation, 06455-020, Barueri, SP, Brazil.

Ixora brevifolia Benth. is an endemic Brazilian species belonging to the Rubiaceae family, known for its specialized metabolites, particularly indole alkaloids¹. The genus *Ixora*, which comprises approximately 400 species, is widely used in traditional medicine due to its pharmacological properties, including anti-inflammatory activity². Prostaglandin E₂ (PGE₂) and leukotriene B₄ (LTB₄) are key inflammatory mediators produced by the COX and LOX enzymes, respectively. Although non-steroidal anti-inflammatory drugs (NSAIDs) inhibit COX, their lack of effect on LOX can lead to increased leukotriene production, which is associated with various adverse effects³. Given the limitations of NSAIDs and the scarcity of information regarding the metabolites of *I. brevifolia*, the present study aimed to evaluate the anti-inflammatory potential of this species. Leaves of *I. brevifolia* were collected from the Atlantic Forest in the municipality of Alfenas (MG, Brazil), and subsequently dried, ground, and extracted using ethanol:water (7:3, v/v). The crude extract was partitioned to yield hexane (Ixh), ethyl acetate (Ixac), chloroform (Ixcl), and hydroalcoholic (Ixhd) fractions. Anti-inflammatory activity was assessed through an ex vivo assay measuring the levels of PGE₂ and LTB₄. The crude extract showed a yield of 14.0%, while the fractions ranged from 0.40% to 42.9%. The extract moderately inhibited the production of PGE₂ (34.9%) and LTB₄ (34.8%), with statistically significant differences compared to the negative control ($p \leq 0.05$). Future investigations will include the screening of the obtained fractions to identify the most bioactive one, guiding further bioactivity-directed isolation. Additionally, the chemical profile of the extract will be investigated through metabolomic analyses to further elucidate the species chemical composition.

Keywords: Rubiaceae, COX, LOX, Ex vivo assay.

Acknowledgments: CAPES – Financing Code 001, FAPEMIG (Doctoral Fellowship Cota 11328, APQ02882-24, APQ-05218-23, APQ-00544-23, APQ-05607-24 and BPD-00760-22), CNPq (316204/2021-8, 406837/2021-0, 408115/2023-8) Scientific Initiation Fellowship E.C.J., FAPESP (24/04606-5) and FINEP.

¹Martins, D., Nunez, C.V. Molecules, 2015, 20 (7), 13422–13495.

²Medina, R.P. et al. Nat. Prod. Res., 2018, 32 (11), 1357–1360.

³Parente, L. J. Rheumatol., 2001, 28 (11), 2375–2382.

